首页> 外文期刊>IEEE Transactions on Neural Networks >A topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall
【24h】

A topological and temporal correlator network for spatiotemporal pattern learning, recognition, and recall

机译:用于时空模式学习,识别和回忆的拓扑和时间相关器网络

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we describe the design of an artificial neural network for spatiotemporal pattern recognition and recall. This network has a five-layered architecture and operates in two modes: pattern learning and recognition mode, and pattern recall mode. In pattern learning and recognition mode, the network extracts a set of topologically and temporally correlated features from each spatiotemporal input pattern based on a variation of Kohonen's self-organizing maps. These features are then used to classify the input into categories based on the fuzzy ART network. In the pattern recall mode, the network can reconstruct any of the learned categories when the appropriate category node is excited or probed. The network performance was evaluated via computer simulations of time-varying, two-dimensional and three-dimensional data. The results show that the network is capable of both recognition and recall of spatiotemporal data in an online and self-organized fashion. The network can also classify repeated events in the spatiotemporal input and is robust to noise in the input such as distortions in the spatial and temporal content.
机译:在本文中,我们描述了用于时空模式识别和召回的人工神经网络的设计。该网络具有五层体系结构,并以两种模式运行:模式学习和识别模式以及模式调用模式。在模式学习和识别模式下,网络根据Kohonen自组织图的变化,从每个时空输入模式中提取一组拓扑和时间相关的特征。这些特征然后用于基于模糊ART网络将输入分类。在模式调用模式下,当激发或探测适当的类别节点时,网络可以重建任何学习的类别。网络性能通过时变的二维和三维数据的计算机模拟进行评估。结果表明,该网络能够以在线和自组织方式识别和回忆时空数据。该网络还可以对时空输入中的重复事件进行分类,并且对输入中的噪声(例如空间和时间内容的失真)具有鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号