首页> 外文期刊>IEEE Transactions on Neural Networks >A connectionist model for corner detection in binary and gray images
【24h】

A connectionist model for corner detection in binary and gray images

机译:用于二进制和灰度图像中拐角检测的连接模型

获取原文
获取原文并翻译 | 示例

摘要

For a given binary/gray image, each pixel in the image is assigned with some initial cornerity (our measurable quantity) which is a vector representing the direction and strength of the corner. These cornerities are then mapped onto a neural-network model which is essentially designed as a cooperative computational framework. The cornerity at each pixel is updated depending on the neighborhood information. After the network dynamics settles to stable state, the dominant points are obtained by finding out the local maxima in the cornerities. Theoretical investigations are made to ensure the stability and convergence of the network. It is found that the network is able to detect corner points: even in the noisy images and for open object boundaries. The dynamics of the network is extended to accept the edge information from gray images as well. The effectiveness of the model is experimentally demonstrated in synthetic and real-life binary and gray images.
机译:对于给定的二进制/灰色图像,图像中的每个像素都分配有一些初始角点(我们的可测量量),该角点是代表角点的方向和强度的向量。然后将这些角点映射到神经网络模型上,该模型实际上被设计为协作计算框架。每个像素的边角性取决于邻域信息而更新。在网络动力学稳定到稳定状态之后,通过找出拐角处的局部最大值来获得优势点。进行理论研究以确保网络的稳定性和收敛性。发现该网络能够检测到拐角点:即使在嘈杂的图像中,也可以检测到开放的对象边界。网络的动态性得到扩展,也可以接受来自灰度图像的边缘信息。该模型的有效性已在合成和现实生活中的二进制和灰色图像中通过实验证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号