首页> 外文期刊>IEEE Transactions on Neural Networks >Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques
【24h】

Tropical cyclone identification and tracking system using integrated neural oscillatory elastic graph matching and hybrid RBF network track mining techniques

机译:集成神经振荡弹性图匹配和混合RBF网络轨迹挖掘技术的热带气旋识别与跟踪系统

获取原文
获取原文并翻译 | 示例

摘要

We present an automatic and integrated neural network-based tropical cyclone (TC) identification and track mining system. The proposed system consists of two main modules: 1) TC pattern identification system using neural oscillatory elastic graph matching model; and 2) TC track mining system using hybrid radial basis function network with time difference and structural learning algorithm. For system evaluation, 120 TC cases appeared in the period between 1985 and 1998 provided by National Oceanic and Atmospheric Administration are being used. Comparing with the bureau numerical TC prediction model used by Guam and the enhanced model proposed by Jeng et al. (1991), the proposed hybrid RBF has attained an over 30% and 18% improvement in forecast errors.
机译:我们提出了一种基于自动和集成神经网络的热带气旋(TC)识别和跟踪采矿系统。所提出的系统包括两个主要模块:1)使用神经振荡弹性图匹配模型的TC模式识别系统; 2)TC跟踪系统,采用带时差的混合径向基函数网络和结构学习算法。为了进行系统评估,正在使用由美国国家海洋和大气管理局提供的1985年至1998年之间的120例TC案例。与关岛使用局局数字TC预测模型和Jeng等人提出的增强模型进行了比较。 (1991年),提出的混合RBF取得了30%和18%以上的预测误差改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号