首页> 外文期刊>IEEE Transactions on Neural Networks >Adaptive acquisition and tracking for deep space array feed antennas
【24h】

Adaptive acquisition and tracking for deep space array feed antennas

机译:深空阵列馈电天线的自适应采集和跟踪

获取原文
获取原文并翻译 | 示例

摘要

The use of radial basis function (RBF) networks and least squares algorithms for acquisition and fine tracking of NASA's 70-m-deep space network antennas is described and evaluated. We demonstrate that such a network, trained using the computationally efficient orthogonal least squares algorithm and working in conjunction with an array feed compensation system, can point a 70-m-deep space antenna with root mean square (rms) errors of 0.1-0.5 millidegrees (mdeg) under a wide range of signal-to-noise ratios and antenna elevations. This pointing accuracy is significantly better than the 0.8 mdeg benchmark for communications at Ka-band frequencies (32 GHz). Continuous adaptation strategies for the RBF network were also implemented to compensate for antenna aging, thermal gradients, and other factors leading to time-varying changes in the antenna structure, resulting in dramatic improvements in system performance. The systems described here are currently in testing phases at NASA's Goldstone Deep Space Network (DSN) and were evaluated using Ka-band telemetry from the Cassini spacecraft.
机译:描述和评估了径向基函数(RBF)网络和最小二乘算法用于NASA 70米深太空网络天线的获取和精细跟踪的方法。我们证明了这样一个网络,该网络使用计算效率高的正交最小二乘算法进行训练,并与阵列馈电补偿系统配合使用,可以指向70米深的空间天线,其均方根(rms)误差为0.1-0.5毫米(mdeg)在各种信噪比和天线高度范围内。该指向精度明显优于Ka频段频率(32 GHz)的0.8 mdeg基准测试。还实施了针对RBF网络的连续自适应策略,以补偿天线老化,热梯度和其他导致天线结构随时间变化的因素,从而显着改善了系统性能。此处描述的系统目前正在NASA的金石深空网络(DSN)的测试阶段,并使用卡西尼号飞船的Ka波段遥测技术进行了评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号