首页> 外文期刊>IEEE Transactions on Neural Networks >Application of adaptive constructive neural networks to image compression
【24h】

Application of adaptive constructive neural networks to image compression

机译:自适应构造神经网络在图像压缩中的应用

获取原文
获取原文并翻译 | 示例

摘要

The objective of the paper is the application of an adaptive constructive one-hidden-layer feedforward neural networks (OHL-FNNs) to image compression. Comparisons with fixed structure neural networks are performed to demonstrate and illustrate the training and the generalization capabilities of the proposed adaptive constructive networks. The influence of quantization effects as well as comparison with the baseline JPEG scheme are also investigated. It has been demonstrated through several experiments that very promising results are obtained as compared to presently available techniques in the literature.
机译:本文的目的是将自适应构造的隐层前馈神经网络(OHL-FNN)应用于图像压缩。进行了与固定结构神经网络的比较,以演示和说明所提出的自适应构造网络的训练和泛化能力。还研究了量化效果的影响以及与基线JPEG方案的比较。与文献中当前可用的技术相比,通过数个实验已经证明获得了非常有希望的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号