首页> 外文期刊>IEEE Transactions on Neural Networks >Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach
【24h】

Real-time collision-free motion planning of a mobile robot using a Neural Dynamics-based approach

机译:使用基于神经动力学的方法对移动机器人进行实时无碰撞运动规划

获取原文
获取原文并翻译 | 示例

摘要

A neural dynamics based approach is proposed for real-time motion planning with obstacle avoidance of a mobile robot in a nonstationary environment. The dynamics of each neuron in the topologically organized neural network is characterized by a shunting equation or an additive equation. The real-time collision-free robot motion is planned through the dynamic neural activity landscape of the neural network without any learning procedures and without any local collision-checking procedures at each step of the robot movement. Therefore the model algorithm is computationally simple. There are only local connections among neurons. The computational complexity linearly depends on the neural network size. The stability of the proposed neural network system is proved by qualitative analysis and a Lyapunov stability theory. The effectiveness and efficiency of the proposed approach are demonstrated through simulation studies.
机译:提出了一种基于神经动力学的方法,用于在非平稳环境中对移动机器人进行避障的实时运动规划。拓扑组织的神经网络中每个神经元的动力学特征是分流方程或加性方程。实时无碰撞机器人运动是通过神经网络的动态神经活动规划的,无需任何学习程序,也无需在机器人运动的每个步骤中使用任何本地碰撞检查程序。因此,模型算法的计算简单。神经元之间只有局部连接。计算复杂度线性地取决于神经网络的大小。通过定性分析和Lyapunov稳定性理论证明了所提出的神经网络系统的稳定性。通过仿真研究证明了该方法的有效性和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号