首页> 外文期刊>IEEE Transactions on Neural Networks >Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification
【24h】

Implementation of an RBF neural network on embedded systems: real-time face tracking and identity verification

机译:在嵌入式系统上实现RBF神经网络:实时人脸跟踪和身份验证

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a real time vision system that allows us to localize faces in video sequences and verify their identity. These processes are image processing techniques based on the radial basis function (RBF) neural network approach. The robustness of this system has been evaluated quantitatively on eight video sequences. We have adapted our model for an application of face recognition using the Olivetti Research Laboratory (ORL), Cambridge, UK, database so as to compare the performance against other systems. We also describe three hardware implementations of our model on embedded systems based on the field programmable gate array (FPGA), zero instruction set computer (ZISC) chips, and digital signal processor (DSP) TMS320C62, respectively. We analyze the algorithm complexity and present results of hardware implementations in terms of the resources used and processing speed. The success rates of face tracking and identity verification are 92% (FPGA), 85% (ZISC), and 98.2% (DSP), respectively. For the three embedded systems, the processing speeds for images size of 288 /spl times/ 352 are 14 images/s, 25 images/s, and 4.8 images/s, respectively.
机译:本文介绍了一种实时视觉系统,该系统使我们能够定位视频序列中的人脸并验证其身份。这些过程是基于径向基函数(RBF)神经网络方法的图像处理技术。该系统的鲁棒性已经在八个视频序列上进行了定量评估。我们已经使用英国剑桥的Olivetti研究实验室(ORL)数据库对我们的模型进行了面部识别应用的调整,以便将其性能与其他系统进行比较。我们还分别基于现场可编程门阵列(FPGA),零指令集计算机(ZISC)芯片和数字信号处理器(DSP)TMS320C62在嵌入式系统上描述了我们模型的三种硬件实现。我们分析了算法的复杂性,并根据使用的资源和处理速度介绍了硬件实现的结果。人脸跟踪和身份验证的成功率分别为92%(FPGA),85%(ZISC)和98.2%(DSP)。对于三个嵌入式系统,图像大小为288 / spl次/ 352的处理速度分别为14图像/秒,25图像/秒和4.8图像/秒。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号