首页> 外文期刊>IEEE Transactions on Neural Networks >Backpropagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise
【24h】

Backpropagation of pseudo-errors: neural networks that are adaptive to heterogeneous noise

机译:伪错误的反向传播:适应异构噪声的神经网络

获取原文
获取原文并翻译 | 示例

摘要

Neural networks are used for prediction model in many applications. The backpropagation algorithm used in most cases corresponds to a statistical nonlinear regression model assuming the constant noise level. Many proposed prediction intervals in the literature so far also assume the constant noise level. There are no prediction intervals in the literature that are accurate under varying noise level and skewed noises. We propose prediction intervals that can automatically adjust to varying noise levels by applying the regression transformation model of Carroll and Rupert (1988). The parameter estimation under the transformation model with power transformations is shown to be equivalent to the backpropagation of pseudo-errors. This new backpropagation algorithm preserves the ability of online training for neural networks.
机译:神经网络在许多应用中用于预测模型。在大多数情况下使用的反向传播算法对应于假定噪声水平恒定的统计非线性回归模型。迄今为止,文献中提出的许多预测间隔都假设噪声水平恒定。在文献中没有在变化的噪声水平和偏斜噪声下准确的预测间隔。我们提出了预测间隔,该间隔可以通过应用Carroll和Rupert(1988)的回归变换模型来自动调整为变化的噪声水平。具有功率变换的变换模型下的参数估计显示为与伪错误的反向传播等效。这种新的反向传播算法保留了神经网络在线训练的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号