首页> 外文期刊>IEEE Transactions on Neural Networks >Blind signal processing by complex domain adaptive spline neural networks
【24h】

Blind signal processing by complex domain adaptive spline neural networks

机译:复杂域自适应样条神经网络的盲信号处理

获取原文
获取原文并翻译 | 示例

摘要

In this paper, neural networks based on an adaptive nonlinear function suitable for both blind complex time domain signal separation and blind frequency domain signal deconvolution, are presented. This activation function, whose shape is modified during learning, is based on a couple of spline functions, one for the real and one for the imaginary part of the input. The shape control points are adaptively changed using gradient-based techniques. B-splines are used, because they allow to impose only simple constraints on the control parameters in order to ensure a monotonously increasing characteristic. This new adaptive function is then applied to the outputs of a one-layer neural network in order to separate complex signals from mixtures by maximizing the entropy of the function outputs. We derive a simple form of the adaptation algorithm and present some experimental results that demonstrate the effectiveness of the proposed method.
机译:本文提出了一种基于自适应非线性函数的神经网络,该神经网络既适用于盲复时域信号分离又适用于盲频域信号反卷积。此激活函数的形状在学习期间会更改,它基于几个样条函数,一个用于输入的实部,另一个用于输入的虚部。使用基于梯度的技术可自适应地更改形状控制点。使用B样条曲线是因为B样条曲线仅允许对控制参数施加简单的约束,以确保单调增加的特性。然后,将此新的自适应函数应用于一层神经网络的输出,以通过使函数输出的熵最大化来从混合物中分离出复杂信号。我们推导了自适应算法的一种简单形式,并提供了一些实验结果,证明了所提出方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号