首页> 外文期刊>IEEE Transactions on Neural Networks >PRSOM: a new visualization method by hybridizing multidimensional scaling and self-organizing map
【24h】

PRSOM: a new visualization method by hybridizing multidimensional scaling and self-organizing map

机译:PRSOM:一种新的可视化方法,将多维比例尺缩放和自组织图混合在一起

获取原文
获取原文并翻译 | 示例

摘要

Self-organizing map (SOM) is an approach of nonlinear dimension reduction and can be used for visualization. It only preserves topological structures of input data on the projected output space. The interneuron distances of SOM are not preserved from input space into output space such that the visualization of SOM can be degraded. Visualization-induced SOM (ViSOM) has been proposed to overcome this problem. However, ViSOM is derived from heuristic and no cost function is assigned to it. In this paper, a probabilistic regularized SOM (PRSOM) is proposed to give a better visualization effect. It is associated with a cost function and gives a principled rule for weight-updating. The advantages of both multidimensional scaling (MDS) and SOM are incorporated in PRSOM. Like MDS, The interneuron distances of PRSOM in input space resemble those in output space, which are predefined before training. Instead of the hard assignment by ViSOM, the soft assignment by PRSOM can be further utilized to enhance the visualization effect. Experimental results demonstrate the effectiveness of the proposed PRSOM method compared with other dimension reduction methods.
机译:自组织映射(SOM)是一种非线性降维方法,可用于可视化。它仅在计划的输出空间上保留输入数据的拓扑结构。从输入空间到输出空间,不能保留SOM的中间神经距离,因此SOM的可视性可能会降低。已经提出了可视化诱导的SOM(ViSOM)来解决此问题。但是,ViSOM是从启发式方法派生的,没有为其分配成本函数。本文提出了一种概率正则化SOM(PRSOM),以提供更好的可视化效果。它与成本函数关联,并给出了权重更新的原则性规则。 PRSOM包含了多维缩放(MDS)和SOM的优点。像MDS一样,输入空间中PRSOM的中间神经距离类似于输出空间中的中间神经距离,这是在训练之前预先定义的。代替ViSOM的硬分配,可以进一步利用PRSOM的软分配来增强可视化效果。实验结果证明了与其他降维方法相比,所提出的PRSOM方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号