首页> 外文期刊>IEEE Transactions on Neural Networks >Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach
【24h】

Blind estimation of channel parameters and source components for EEG signals: a sparse factorization approach

机译:EEG信号的信道参数和源分量的盲估计:一种稀疏分解方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we use a two-stage sparse factorization approach for blindly estimating the channel parameters and then estimating source components for electroencephalogram (EEG) signals. EEG signals are assumed to be linear mixtures of source components, artifacts, etc. Therefore, a raw EEG data matrix can be factored into the product of two matrices, one of which represents the mixing matrix and the other the source component matrix. Furthermore, the components are sparse in the time-frequency domain, i.e., the factorization is a sparse factorization in the time frequency domain. It is a challenging task to estimate the mixing matrix. Our extensive analysis and computational results, which were based on many sets of EEG data, not only provide firm evidences supporting the above assumption, but also prompt us to propose a new algorithm for estimating the mixing matrix. After the mixing matrix is estimated, the source components are estimated in the time frequency domain using a linear programming method. In an example of the potential applications of our approach, we analyzed the EEG data that was obtained from a modified Sternberg memory experiment. Two almost uncorrelated components obtained by applying the sparse factorization method were selected for phase synchronization analysis. Several interesting findings were obtained, especially that memory-related synchronization and desynchronization appear in the alpha band, and that the strength of alpha band synchronization is related to memory performance.
机译:在本文中,我们使用两阶段稀疏分解方法来盲目估计通道参数,然后估计脑电图(EEG)信号的源分量。假设EEG信号是源成分,伪像等的线性混合。因此,可以将原始EEG数据矩阵分解为两个矩阵的乘积,其中一个表示混合矩阵,另一个表示源成分矩阵。此外,分量在时频域中是稀疏的,即,分解是时频域中的稀疏分解。估计混合矩阵是一项艰巨的任务。我们基于许多EEG数据的广泛分析和计算结果,不仅提供了支持上述假设的确凿证据,而且促使我们提出一种新的估计混合矩阵的算法。在估计混合矩阵之后,使用线性编程方法在时频域中估计源分量。在我们的方法潜在应用的一个例子中,我们分析了从改进的Sternberg记忆实验获得的EEG数据。通过应用稀疏因子分解方法获得的两个几乎不相关的分量被选择用于相位同步分析。获得了一些有趣的发现,尤其是与内存相关的同步和去同步出现在alpha波段中,并且alpha波段同步的强度与内存性能有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号