首页> 外文期刊>IEEE Transactions on Neural Networks >Performance-Oriented Antiwindup for a Class of Linear Control Systems With Augmented Neural Network Controller
【24h】

Performance-Oriented Antiwindup for a Class of Linear Control Systems With Augmented Neural Network Controller

机译:具有增强神经网络控制器的一类线性控制系统的面向性能的抗饱和

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a conditioning scheme for a linear control system which is enhanced by a neural network (NN) controller and subjected to a control signal amplitude limit. The NN controller improves the performance of the linear control system by directly estimating an actuator-matched, unmodeled, nonlinear disturbance, in closed-loop, and compensating for it. As disturbances are generally known to be bounded, the nominal NN-control element is modified to keep its output below the disturbance bound. The linear control element is conditioned by an antiwindup (AW) compensator which ensures performance close to the nominal controller and swift recovery from saturation. For this, the AW compensator proposed is of low order, designed using convex linear matrix inequalities (LMIs) optimization
机译:本文提出了一种线性控制系统的调节方案,该方案由神经网络(NN)控制器增强并受到控制信号幅度限制。 NN控制器通过在闭环中直接估算执行器匹配的,未建模的非线性干扰并对其进行补偿,从而提高了线性控制系统的性能。由于通常已知扰动是有界的,因此对标称NN控制元件进行了修改,以使其输出低于扰动界。线性控制元件由抗饱和(AW)补偿器进行调节,该补偿器可确保性能接近标称控制器并能迅速从饱和状态恢复。为此,提出的AW补偿器是低阶的,使用凸线性矩阵不等式(LMI)优化设计

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号