首页> 外文期刊>IEEE Transactions on Neural Networks >Real-Time Neural Network Inversion on the SRC-6e Reconfigurable Computer
【24h】

Real-Time Neural Network Inversion on the SRC-6e Reconfigurable Computer

机译:SRC-6e可重构计算机上的实时神经网络求逆

获取原文
获取原文并翻译 | 示例

摘要

Implementation of real-time neural network inversion on the SRC-6e, a computer that uses multiple field-programmable gate arrays (FPGAs) as reconfigurable computing elements, is examined using a sonar application as a specific case study. A feedforward multilayer perceptron neural network is used to estimate the performance of the sonar system (Jung , 2001). A particle swarm algorithm uses the trained network to perform a search for the control parameters required to optimize the output performance of the sonar system in the presence of imposed environmental constraints (Fox , 2002). The particle swarm optimization (PSO) requires repetitive queries of the neural network. Alternatives for implementing neural networks and particle swarm algorithms in reconfigurable hardware are contrasted. The final implementation provides nearly two orders of magnitude of speed increase over a state-of-the-art personal computer (PC), providing a real-time solution
机译:使用声纳应用程序作为具体案例研究了SRC-6e(使用多个现场可编程门阵列(FPGA)作为可重配置计算元素的计算机)上实时神经网络求逆的实现。前馈多层感知器神经网络用于估计声纳系统的性能(Jung,2001)。粒子群算法使用受过训练的网络来搜索在存在环境约束的情况下优化声纳系统输出性能所需的控制参数(Fox,2002)。粒子群优化(PSO)需要对神经网络进行重复查询。对比了在可重构硬件中实现神经网络和粒子群算法的替代方法。最终的实现比最先进的个人计算机(PC)提供了将近两个数量级的速度提高,从而提供了实时解决方案

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号