首页> 外文期刊>IEEE Transactions on Neural Networks >Adaptive Cardiac Resynchronization Therapy Device Based on Spiking Neurons Architecture and Reinforcement Learning Scheme
【24h】

Adaptive Cardiac Resynchronization Therapy Device Based on Spiking Neurons Architecture and Reinforcement Learning Scheme

机译:基于尖峰神经元架构和强化学习方案的自适应心脏再同步治疗仪

获取原文
获取原文并翻译 | 示例

摘要

Spiking neural network (NN) architecture that uses Hebbian learning and reinforcement-learning schemes for adapting the synaptic weights is implemented in silicon and performs dynamic optimization according to hemodynamic sensor for a cardiac resynchronization therapy (CRT) device. The spiking NN architecture dynamically changes the atrioventricular (AV) delay and interventricular (VV) interval parameters according to the information provided by the intracardiac electrograms (IEGMs) and hemodynamic sensors. The spiking NN coprocessor performs the adaptive part and is controlled by a deterministic algorithm master controller. The simulated cardiac output obtained with the adaptive CRT device is 30% higher than with a nonadaptive CRT device and is likely to provide improvement in the quality of life for patients with congestive heart failure. The spiking NN architecture shows synaptic plasticity acquired during the learning process. The synaptic plasticity is manifested by a dynamic learning rate parameter that correlates patterns of hemodynamic sensor with the system outputs, i.e., the optimal AV and VV pacing intervals
机译:使用Hebbian学习和强化学习方案来调整突触权重的尖峰神经网络(NN)架构在硅中实现,并根据血液动力学传感器对心脏再同步治疗(CRT)设备执行动态优化。尖峰NN架构根据心内电描记图(IEGM)和血液动力学传感器提供的信息动态更改房室(AV)延迟和心室(VV)间隔参数。尖峰NN协处理器执行自适应部分,并由确定性算法主控制器控制。自适应CRT设备获得的模拟心输出量比非自适应CRT设备高30%,并可能为充血性心力衰竭患者改善生活质量。突兀的NN体系结构显示了在学习过程中获得的突触可塑性。突触可塑性通过动态学习速率参数来体现,该参数将血液动力学传感器的模式与系统输出(即最佳AV和VV起搏间隔)相关联

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号