首页> 外文期刊>Neural Networks, IEEE Transactions on >Implementation Study of an Analog Spiking Neural Network for Assisting Cardiac Delay Prediction in a Cardiac Resynchronization Therapy Device
【24h】

Implementation Study of an Analog Spiking Neural Network for Assisting Cardiac Delay Prediction in a Cardiac Resynchronization Therapy Device

机译:模拟尖刺神经网络辅助心脏再同步治疗设备中心脏延迟预测的实现研究

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we aim at developing an analog spiking neural network (SNN) for reinforcing the performance of conventional cardiac resynchronization therapy (CRT) devices (also called biventricular pacemakers). Targeting an alternative analog solution in 0.13-$mu{rm m}$ CMOS technology, this paper proposes an approach to improve cardiac delay predictions in every cardiac period in order to assist the CRT device to provide real-time optimal heartbeats. The primary analog SNN architecture is proposed and its implementation is studied to fulfill the requirement of very low energy consumption. By using the Hebbian learning and reinforcement learning algorithms, the intended adaptive CRT device works with different functional modes. The simulations of both learning algorithms have been carried out, and they were shown to demonstrate the global functionalities. To improve the realism of the system, we introduce various heart behavior models (with constant/variable heart rates) that allow pathologic simulations with/without noise on the signals of the input sensors. The simulations of the global system (pacemaker models coupled with heart models) have been investigated and used to validate the analog spiking neural network implementation.
机译:在本文中,我们旨在开发一种模拟峰值神经网络(SNN),以增强常规心脏再同步治疗(CRT)设备(也称为双心室起搏器)的性能。本文针对0.13-μmCMOS技术中的替代模拟解决方案,提出了一种在每个心动周期内改善心律延迟预测的方法,以帮助CRT设备提供实时的最佳心跳。提出了主要的模拟SNN架构,并对其实现进行了研究,以满足非常低的能耗要求。通过使用Hebbian学习和强化学习算法,预期的自适应CRT设备可在不同的功能模式下工作。已经对两种学习算法进行了仿真,并显示了它们演示了全局功能。为了改善系统的真实性,我们引入了各种心脏行为模型(具有恒定/可变的心律),可以对输入传感器的信号进行有无噪声的病理模拟。已经研究了全局系统的仿真(起搏器模型与心脏模型),并用于验证模拟尖峰神经网络的实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号