首页> 外文期刊>IEEE Transactions on Neural Networks >A Fuzzy Min-Max Neural Network Classifier With Compensatory Neuron Architecture
【24h】

A Fuzzy Min-Max Neural Network Classifier With Compensatory Neuron Architecture

机译:具有补偿神经元结构的模糊最小-最大神经网络分类器

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a fuzzy min-max neural network classifier with compensatory neurons (FMCNs). FMCN uses hyperbox fuzzy sets to represent the pattern classes. It is a supervised classification technique with new compensatory neuron architecture. The concept of compensatory neuron is inspired from the reflex system of human brain which takes over the control in hazardous conditions. Compensatory neurons (CNs) imitate this behavior by getting activated whenever a test sample falls in the overlapped regions amongst different classes. These neurons are capable to handle the hyperbox overlap and containment more efficiently. Simpson used contraction process based on the principle of minimal disturbance, to solve the problem of hyperbox overlaps. FMCN eliminates use of this process since it is found to be erroneous. FMCN is capable to learn the data online in a single pass through with reduced classification and gradation errors. One of the good features of FMCN is that its performance is less dependent on the initialization of expansion coefficient, i.e., maximum hyperbox size. The paper demonstrates the performance of FMCN by comparing it with fuzzy min-max neural network (FMNN) classifier and general fuzzy min-max neural network (GFMN) classifier, using several examples
机译:本文提出了一种具有补偿神经元(FMCN)的模糊最小-最大神经网络分类器。 FMCN使用超框模糊集表示模式类别。它是一种具有新的补偿神经元体系结构的监督分类技术。补偿性神经元的概念源于人脑的反射系统,该系统在危险条件下接管了控制。每当测试样本落入不同类别之间的重叠区域时,补偿性神经元(CN)就会被激活,从而模仿这种行为。这些神经元能够更有效地处理超框重叠和包容。辛普森基于最小扰动原理使用收缩过程,解决了超盒重叠问题。 FMCN消除了此过程的使用,因为发现它是错误的。 FMCN能够一次通过在线学习数据,从而减少了分类和等级错误。 FMCN的优点之一是其性能较少依赖于扩展系数的初始化,即最大超级框大小。本文通过几个示例,将FMCN与模糊最小-最大神经网络(FMNN)分类器和通用模糊最小-最大神经网络(GFMN)分类器进行比较,展示了FMCN的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号