首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Multi-Level Fuzzy Min-Max Neural Network Classifier
【24h】

Multi-Level Fuzzy Min-Max Neural Network Classifier

机译:多级模糊最小-最大神经网络分类器

获取原文
获取原文并翻译 | 示例

摘要

In this paper a multi-level fuzzy min-max neural network classifier (MLF), which is a supervised learning method, is described. MLF uses basic concepts of the fuzzy min-max (FMM) method in a multi-level structure to classify patterns. This method uses separate classifiers with smaller hyperboxes in different levels to classify the samples that are located in overlapping regions. The final output of the network is formed by combining the outputs of these classifiers. MLF is capable of learning nonlinear boundaries with a single pass through the data. According to the obtained results, the MLF method, compared to the other FMM networks, has the highest performance and the lowest sensitivity to maximum size of the hyperbox parameter $(theta)$, with a training accuracy of 100% in most cases.
机译:本文描述了一种多级模糊最小-最大神经网络分类器(MLF),它是一种有监督的学习方法。 MLF在多层结构中使用模糊最小-最大值(FMM)方法的基本概念来对模式进行分类。该方法使用具有不同级别的较小超级框的单独分类器对位于重叠区域中的样本进行分类。网络的最终输出是通过组合这些分类器的输出而形成的。 MLF只需通过一次数据就可以学习非线性边界。根据获得的结果,与其他FMM网络相比,MLF方法对超级盒参数$θ$的最大大小具有最高的性能和最低的灵敏度,在大多数情况下其训练精度为100%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号