首页> 外文期刊>IEEE Transactions on Neural Networks >Packet Loss Rate Prediction Using the Sparse Basis Prediction Model
【24h】

Packet Loss Rate Prediction Using the Sparse Basis Prediction Model

机译:基于稀疏基础预测模型的丢包率预测

获取原文
获取原文并翻译 | 示例

摘要

The quality of multimedia communicated through the Internet is highly sensitive to packet loss. In this letter, we develop a time-series prediction model for the end-to-end packet loss rate (PLR). The estimate of the PLR is needed in several transmission control mechanisms such as the TCP-friendly congestion control mechanism for UDP traffic. In addition, it is needed to estimate the amount of redundancy for the forward error correction (FEC) mechanism. An accurate prediction would therefore be very valuable. We used a relatively novel prediction model called sparse basis prediction model. It is an adaptive nonlinear prediction approach, whereby a very large dictionary of possible inputs are extracted from the time series (for example, through moving averages, some nonlinear transformations, etc.). Only few of the very best inputs among the dictionary are selected and are combined linearly. An algorithm adaptively updates the input selection (as well as updates the weights) each time a new time sample arrives in a computationally efficient way. Simulation experiments indicate significantly better prediction performance for the sparse basis approach, as compared to other traditional nonlinear approaches
机译:通过Internet传递的多媒体质量对数据包丢失高度敏感。在这封信中,我们为端到端丢包率(PLR)开发了时间序列预测模型。几种传输控制机制(例如UDP流量的TCP友好拥塞控制机制)都需要PLR的估计。另外,需要估计前向纠错(FEC)机制的冗余量。因此,准确的预测将非常有价值。我们使用了一种相对新颖的预测模型,称为稀疏基础预测模型。这是一种自适应非线性预测方法,通过该方法,可以从时间序列中提取非常大的可能输入字典(例如,通过移动平均值,一些非线性变换等)。在字典中只有极少数最好的输入被选中并线性组合。每当新的时间样本以计算有效的方式到达时,算法就会自适应地更新输入选择(以及更新权重)。仿真实验表明,与其他传统的非线性方法相比,稀疏基础方法的预测性能明显更好

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号