首页> 外文期刊>IEEE Transactions on Neural Networks >Stochastic Resonance in Continuous and Spiking Neuron Models With Levy Noise
【24h】

Stochastic Resonance in Continuous and Spiking Neuron Models With Levy Noise

机译:具有连续噪声的连续和尖峰神经元模型中的随机共振

获取原文
获取原文并翻译 | 示例

摘要

Levy noise can help neurons detect faint or subthreshold signals. Levy noise extends standard Brownian noise to many types of impulsive jump-noise processes found in real and model neurons as well as in models of finance and other random phenomena. Two new theorems and the ItÔ calculus show that white Levy noise will benefit subthreshold neuronal signal detection if the noise process''s scaled drift velocity falls inside an interval that depends on the threshold values. These results generalize earlier “forbidden interval” theorems of neuronal “stochastic resonance” (SR) or noise-injection benefits. Global and local Lipschitz conditions imply that additive white Levy noise can increase the mutual information or bit count of several feedback neuron models that obey a general stochastic differential equation (SDE). Simulation results show that the same noise benefits still occur for some infinite-variance stable Levy noise processes even though the theorems themselves apply only to finite-variance Levy noise. The Appendix proves the two ItÔ-theoretic lemmas that underlie the new Levy noise-benefit theorems.
机译:杂音可以帮助神经元检测微弱或阈值以下的信号。 Levy噪声将标准的Brownian噪声扩展到在实际和模型神经元以及金融模型和其他随机现象模型中发现的多种类型的脉冲跳跃噪声过程。两个新定理和ItÔ演算表明,如果噪声过程的标度漂移速度落在取决于阈值的间隔内,则白列维噪声将有益于阈下神经元信号检测。这些结果概括了神经元“随机共振”(SR)或噪声注入益处的较早的“禁止间隔”定理。全局和局部Lipschitz条件意味着加性白Levy噪声会增加服从一般随机微分方程(SDE)的多个反馈神经元模型的互信息或位数。仿真结果表明,即使定理本身仅适用于有限方差Levy噪声,对于某些无限方差稳定的Levy噪声过程仍会产生相同的噪声收益。附录证明了两个新的Levy噪声效益定理基础的ItÔ理论引理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号