首页> 外文期刊>IEEE Transactions on Neural Networks >Adaptive Dynamic Inversion via Time-Scale Separation
【24h】

Adaptive Dynamic Inversion via Time-Scale Separation

机译:通过时标分离进行自适应动态反演

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a full state feedback adaptive dynamic inversion method for uncertain systems that depend nonlinearly upon the control input. Using a specialized set of basis functions that respect the monotonic property of the system nonlinearities with respect to control input, a state predictor is defined for derivation of the adaptive laws. The adaptive dynamic inversion controller is defined as a solution of a fast dynamical equation, which achieves time-scale separation between the state predictor and the controller dynamics. Lyapunov-based adaptive laws ensure that the predictor tracks the state of the nonlinear system with bounded errors. As a result, the system state tracks the desired reference model with bounded errors. Benefits of the proposed design method are demonstrated using Van der Pol dynamics with nonlinear control input.
机译:本文提出了一种用于非线性系统的非线性控制状态下的全状态反馈自适应动态反演方法。使用一组专门的基函数,这些基函数考虑了系统非线性相对于控制输入的单调性,因此定义了一个状态预测器,用于推导自适应律。自适应动态反演控制器定义为快速动力学方程的解,该方程可实现状态预测器和控制器动力学之间的时标分离。基于Lyapunov的自适应定律可确保预测变量跟踪具有有限误差的非线性系统的状态。结果,系统状态以有限的误差跟踪所需的参考模型。使用带有非线性控制输入的Van der Pol动力学论证了所提出设计方法的好处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号