首页> 外文期刊>IEEE Transactions on Neural Networks >A Neural-Network-Based Model for the Dynamic Simulation of the Tire/Suspension System While Traversing Road Irregularities
【24h】

A Neural-Network-Based Model for the Dynamic Simulation of the Tire/Suspension System While Traversing Road Irregularities

机译:基于神经网络的轮胎/悬架系统穿越道路不平顺时动态仿真模型

获取原文
获取原文并翻译 | 示例

摘要

This paper deals with the simulation of the tire/suspension dynamics by using recurrent neural networks (RNNs). RNNs are derived from the multilayer feedforward neural networks, by adding feedback connections between output and input layers. The optimal network architecture derives from a parametric analysis based on the optimal tradeoff between network accuracy and size. The neural network can be trained with experimental data obtained in the laboratory from simulated road profiles (cleats). The results obtained from the neural network demonstrate good agreement with the experimental results over a wide range of operation conditions. The NN model can be effectively applied as a part of vehicle system model to accurately predict elastic bushings and tire dynamics behavior. Although the neural network model, as a black-box model, does not provide a good insight of the physical behavior of the tire/suspension system, it is a useful tool for assessing vehicle ride and noise, vibration, harshness (NVH) performance due to its good computational efficiency and accuracy.
机译:本文使用递归神经网络(RNN)进行轮胎/悬架动力学仿真。通过在输出层和输入层之间添加反馈连接,可以从多层前馈神经网络派生RNN。最佳网络体系结构是基于网络精度和大小之间的最佳折衷,从参数分析中得出的。可以使用在实验室中从模拟道路轮廓(夹缝)获得的实验数据来训练神经网络。从神经网络获得的结果证明在广泛的操作条件下与实验结果吻合良好。 NN模型可以有效地用作车辆系统模型的一部分,以准确预测弹性衬套和轮胎动力学行为。尽管作为黑匣子模型的神经网络模型不能很好地了解轮胎/悬架系统的物理行为,但它是评估车辆行驶和噪声,振动,粗糙度(NVH)性能的有用工具。其良好的计算效率和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号