首页> 外文期刊>IEEE Transactions on Neural Networks >Equilibria and Their Bifurcations in a Recurrent Neural Network Involving Iterates of a Transcendental Function
【24h】

Equilibria and Their Bifurcations in a Recurrent Neural Network Involving Iterates of a Transcendental Function

机译:涉及先验函数迭代的递归神经网络中的平衡及其分支

获取原文
获取原文并翻译 | 示例

摘要

Some practical models contain so complicated mathematical expressions that it is hard to determine the number and distribution of all equilibria, not mentioning the qualitative properties and bifurcations of those equilibria. The three-node recurrent neural network system with two free weight parameters, originally introduced by Ruiz, Owens, and Townley in 1997, is such a system, for which the equation of equilibria involves transcendental function $tanh(x)$ and its iterates. Not computing coordinates of its equilibria, in this paper, we display an effective technique to determine the number and distribution of its equilibria. Without full information about equilibria, our method enables to further study qualitative properties of those equilibria and discuss their saddle node, pitchfork, and Hopf bifurcations by approximating center manifolds.
机译:一些实用模型包含如此复杂的数学表达式,很难确定所有平衡的数量和分布,更不用说那些平衡的定性性质和分叉。具有两个自由权重参数的三节点递归神经网络系统最初是由Ruiz,Owens和Townley于1997年引入的,该系统的平衡方程涉及先验函数$ tanh(x)$并对其进行迭代。在本文中,我们没有计算其平衡的坐标,而是展示了一种有效的技术来确定其平衡的数量和分布。在没有关于平衡的完整信息的情况下,我们的方法无法进一步研究那些平衡的定性性质,并通过近似中心歧管来讨论它们的鞍结,干草叉和霍普夫分支。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号