首页> 外文期刊>Neural Networks, IEEE Transactions on >Extending Stochastic Resonance for Neuron Models to General LÉvy Noise
【24h】

Extending Stochastic Resonance for Neuron Models to General LÉvy Noise

机译:将神经元模型的随机共振扩展到一般Lévy噪声

获取原文
获取原文并翻译 | 示例

摘要

A recent paper by Patel and Kosko (2008) demonstrated stochastic resonance (SR) for general feedback continuous and spiking neuron models using additive LÉvy noise constrained to have finite second moments. In this brief, we drop this constraint and show that their result extends to general LÉvy noise models. We achieve this by showing that “large jump” discontinuities in the noise can be controlled so as to allow the stochastic model to tend to a deterministic one as the noise dissipates to zero. SR then follows by a “forbidden intervals” theorem as in Patel and Kosko''s paper.
机译:Patel和Kosko(2008)的最新论文证明了使用加性Lévy噪声约束第二有限矩的通用反馈连续和尖峰神经元模型的随机共振(SR)。在本摘要中,我们删除了此约束,并表明它们的结果扩展到了一般的Lévy噪声模型。我们通过显示可以控制噪声中的“大跳跃”不连续性来实现这一点,以便当噪声消散为零时,随机模型趋于确定性。然后,SR遵循Patel和Kosko的论文中的“禁止间隔”定理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号