首页> 外文期刊>Neural Networks, IEEE Transactions on >Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning
【24h】

Uncorrelated Multilinear Principal Component Analysis for Unsupervised Multilinear Subspace Learning

机译:无监督多线性子空间学习的不相关多线性主成分分析

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes an uncorrelated multilinear principal component analysis (UMPCA) algorithm for unsupervised subspace learning of tensorial data. It should be viewed as a multilinear extension of the classical principal component analysis (PCA) framework. Through successive variance maximization, UMPCA seeks a tensor-to-vector projection (TVP) that captures most of the variation in the original tensorial input while producing uncorrelated features. The solution consists of sequential iterative steps based on the alternating projection method. In addition to deriving the UMPCA framework, this work offers a way to systematically determine the maximum number of uncorrelated multilinear features that can be extracted by the method. UMPCA is compared against the baseline PCA solution and its five state-of-the-art multilinear extensions, namely two-dimensional PCA (2DPCA), concurrent subspaces analysis (CSA), tensor rank-one decomposition (TROD), generalized PCA (GPCA), and multilinear PCA (MPCA), on the tasks of unsupervised face and gait recognition. Experimental results included in this paper suggest that UMPCA is particularly effective in determining the low-dimensional projection space needed in such recognition tasks.
机译:针对张量数据的无监督子空间学习,提出了一种不相关的多线性主成分分析(UMPCA)算法。应该将其视为经典主成分分析(PCA)框架的多线性扩展。通过连续的方差最大化,UMPCA寻求张量到向量的投影(TVP),该投影可捕获原始张量输入中的大部分变化,同时产生不相关的特征。该解决方案包括基于交替投影方法的顺序迭代步骤。除了推导UMPCA框架外,这项工作还提供了一种系统地确定可以通过该方法提取的最大不相关多线性特征的方法。将UMPCA与基准PCA解决方案及其五个最新的多线性扩展进行了比较,即二维PCA(2DPCA),并发子空间分析(CSA),张量秩一分解(TROD),广义PCA(GPCA) )和多线性PCA(MPCA),用于无监督人脸和步态识别的任务。本文包含的实验结果表明,UMPCA在确定此类识别任务所需的低维投影空间方面特别有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号