首页> 外文期刊>Neural Networks, IEEE Transactions on >Partial Logistic Artificial Neural Network for Competing Risks Regularized With Automatic Relevance Determination
【24h】

Partial Logistic Artificial Neural Network for Competing Risks Regularized With Automatic Relevance Determination

机译:局部Logistic人工神经网络用于竞争风险的自动相关性确定

获取原文
获取原文并翻译 | 示例

摘要

Time-to-event analysis is important in a wide range of applications from clinical prognosis to risk modeling for credit scoring and insurance. In risk modeling, it is sometimes required to make a simultaneous assessment of the hazard arising from two or more mutually exclusive factors. This paper applies to an existing neural network model for competing risks (PLANNCR), a Bayesian regularization with the standard approximation of the evidence to implement automatic relevance determination (PLANNCR-ARD). The theoretical framework for the model is described and its application is illustrated with reference to local and distal recurrence of breast cancer, using the data set of Veronesi (1995).
机译:事件发生时间分析在从临床预后到信用评分和保险风险建模的广泛应用中都很重要。在风险建模中,有时需要同时评估由两个或多个互斥因素引起的危害。本文适用于现有的竞争风险神经网络模型(PLANNCR),一种贝叶斯正则化方法,其标准近似值为证据,可实现自动相关性确定(PLANNCR-ARD)。使用Veronesi(1995)的数据集,描述了该模型的理论框架,并参考了乳腺癌的局部和远侧复发说明了其应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号