首页> 外文期刊>Neural Networks, IEEE Transactions on >A Novel Geometric Approach to Binary Classification Based on Scaled Convex Hulls
【24h】

A Novel Geometric Approach to Binary Classification Based on Scaled Convex Hulls

机译:基于缩放凸包的二元分类的几何方法

获取原文
获取原文并翻译 | 示例

摘要

Geometric methods are very intuitive and provide a theoretical foundation to many optimization problems in the fields of pattern recognition and machine learning. In this brief, the notion of scaled convex hull (SCH) is defined and a set of theoretical results are exploited to support it. These results allow the existing nearest point algorithms to be directly applied to solve both the separable and nonseparable classification problems successfully and efficiently. Then, the popular S-K algorithm has been presented to solve the nonseparable problems in the context of the SCH framework. The theoretical analysis and some experiments show that the proposed method may achieve better performance than the state-of-the-art methods in terms of the number of kernel evaluations and the execution time.
机译:几何方法非常直观,为模式识别和机器学习领域的许多优化问题提供了理论基础。在本文中,定义了比例凸壳(SCH)的概念,并利用一组理论结果来支持它。这些结果允许将现有的最近点算法直接应用于成功,有效地解决可分离和不可分离的分类问题。然后,提出了流行的S-K算法来解决SCH框架中不可分离的问题。理论分析和一些实验表明,就内核评估的数量和执行时间而言,所提出的方法可能比最先进的方法具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号