首页> 外文期刊>Neural Networks, IEEE Transactions on >RKHS Bayes Discriminant: A Subspace Constrained Nonlinear Feature Projection for Signal Detection
【24h】

RKHS Bayes Discriminant: A Subspace Constrained Nonlinear Feature Projection for Signal Detection

机译:RKHS贝叶斯判别式:用于信号检测的子空间约束非线性特征投影

获取原文
获取原文并翻译 | 示例

摘要

Given the knowledge of class probability densities, a priori probabilities, and relative risk levels, Bayes classifier provides the optimal minimum-risk decision rule. Specifically, focusing on the two-class (detection) scenario, under certain symmetry assumptions, matched filters provide optimal results for the detection problem. Noticing that the Bayes classifier is in fact a nonlinear projection of the feature vector to a single-dimensional statistic, in this paper, we develop a smooth nonlinear projection filter constrained to the estimated span of class conditional distributions as does the Bayes classifier. The nonlinear projection filter is designed in a reproducing kernel Hilbert space leading to an analytical solution both for the filter and the optimal threshold. The proposed approach is tested on typical detection problems, such as neural spike detection or automatic target detection in synthetic aperture radar (SAR) imagery. Results are compared with linear and kernel discriminant analysis, as well as classification algorithms such as support vector machine, AdaBoost and LogitBoost.
机译:给定类别概率密度,先验概率和相对风险水平的知识,贝叶斯分类器提供了最佳最小风险决策规则。具体而言,在某些对称性假设下,着眼于两类(检测)方案,匹配的滤波器可为检测问题提供最佳结果。注意到贝叶斯分类器实际上是特征向量对一维统计量的非线性投影,在本文中,我们像贝叶斯分类器一样,开发了一种约束到类条件分布的估计跨度的平滑非线性投影滤波器。非线性投影滤波器是在可复制内核Hilbert空间中设计的,从而为滤波器和最佳阈值提供了解析解决方案。该方法针对典型的检测问题进行了测试,例如在合成孔径雷达(SAR)图像中的神经尖峰检测或自动目标检测。将结果与线性和内核判别分析以及支持向量机,AdaBoost和LogitBoost等分类算法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号