首页> 外文期刊>Neural Networks, IEEE Transactions on >A Neural Network Model to Minimize the Connected Dominating Set for Self-Configuration of Wireless Sensor Networks
【24h】

A Neural Network Model to Minimize the Connected Dominating Set for Self-Configuration of Wireless Sensor Networks

机译:一种神经网络模型,用于最小化无线传感器网络自配置的连接支配集

获取原文
获取原文并翻译 | 示例

摘要

A wireless ad hoc sensor network consists of a number of sensors spreading across a geographical area. The performance of the network suffers as the number of nodes grows, and a large sensor network quickly becomes difficult to manage. Thus, it is essential that the network be able to self-organize. Clustering is an efficient approach to simplify the network structure and to alleviate the scalability problem. One method to create clusters is to use weakly connected dominating sets (WCDSs). Finding the minimum WCDS in an arbitrary graph is an NP-complete problem. We propose a neural network model to find the minimum WCDS in a wireless sensor network. We present a directed convergence algorithm. The new algorithm outperforms the normal convergence algorithm both in efficiency and in the quality of solutions. Moreover, it is shown that the neural network is robust. We investigate the scalability of the neural network model by testing it on a range of sized graphs and on a range of transmission radii. Compared with Guha and Khuller's centralized algorithm, the proposed neural network with directed convergency achieves better results when the transmission radius is short, and equal performance when the transmission radius becomes larger. The parallel version of the neural network model takes time $O(d)$ , where $d$ is the maximal degree in the graph corresponding to the sensor network, while the centralized algorithm takes $O(n^2)$. We also investigate the effect of the transmission radius on the size of WCDS. The results show that it is important to select a suitable transmission radius to make the network stable and to extend the lifespan of the network. The proposed model can be used on sink nodes in sensor networks, so that a sink node can inform the nodes to be -n-na coordinator (clusterhead) in the WCDS obtained by the algorithm. Thus, the message overhead is $O({cal M})$, where ${cal M}$ is the size of the WCDS.
机译:无线自组织传感器网络由分布在某个地理区域的多个传感器组成。随着节点数量的增加,网络性能会受到影响,大型传感器网络很快变得难以管理。因此,至关重要的是网络能够自我组织。群集是一种有效的方法,可以简化网络结构并缓解可伸缩性问题。创建群集的一种方法是使用弱连接的控制集(WCDS)。在任意图中找到最小WCDS是一个NP完全问题。我们提出了一个神经网络模型来找到无线传感器网络中的最小WCDS。我们提出一种有向收敛算法。新算法在效率和解决方案质量方面均优于常规收敛算法。此外,表明神经网络是鲁棒的。我们通过在一系列大小的图和一系列传输半径上对其进行测试,来研究神经网络模型的可伸缩性。与Guha和Khuller的集中式算法相比,所提出的定向收敛神经网络在传输半径短时效果更好,而在传输半径变大时性能相同。神经网络模型的并行版本花费时间$ O(d)$,其中$ d $是图中对应于传感器网络的最大程度,而集中式算法则花费$ O(n ^ 2)$。我们还研究了传输半径对WCDS大小的影响。结果表明,选择合适的传输半径以使网络稳定并延长网络寿命很重要。所提出的模型可以用于传感器网络中的汇聚节点,因此汇聚节点可以通知该节点是通过该算法获得的WCDS中的-n-na协调器(聚簇头)。因此,消息开销为$ O({cal M})$,其中$ {cal M} $为WCDS的大小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号