首页> 外文期刊>Neural Networks, IEEE Transactions on >Fault Detection and Diagnosis Based on Modeling and Estimation Methods
【24h】

Fault Detection and Diagnosis Based on Modeling and Estimation Methods

机译:基于建模和估计方法的故障检测与诊断

获取原文
获取原文并翻译 | 示例

摘要

This paper investigates the problem of fault detection and diagnosis in a class of nonlinear systems with modeling uncertainties. A nonlinear observer is first designed for monitoring fault. Radial basis function (RBF) neural network is used in this observer to approximate the unknown nonlinear dynamics. When a fault occurs, another RBF is triggered to capture the nonlinear characteristics of the fault function. The fault model obtained by the second neural network (NN) can be used for identifying the failure mode by comparing it with any known failure modes. Finally, a simulation example is presented to illustrate the effectiveness of the proposed scheme.
机译:本文研究了一类具有建模不确定性的非线性系统的故障检测和诊断问题。首先设计了一个非线性观测器来监视故障。径向基函数(RBF)神经网络在该观察器中用于近似未知的非线性动力学。发生故障时,将触发另一个RBF,以捕获故障函数的非线性特征。通过将第二神经网络(NN)获得的故障模型与任何已知的故障模式进行比较,可以将其用于识别故障模式。最后,给出了一个仿真实例来说明所提方案的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号