首页> 外文期刊>Neural Networks, IEEE Transactions on >Recognition of Abstract Objects Via Neural Oscillators: Interaction Among Topological Organization, Associative Memory and Gamma Band Synchronization
【24h】

Recognition of Abstract Objects Via Neural Oscillators: Interaction Among Topological Organization, Associative Memory and Gamma Band Synchronization

机译:通过神经振荡器识别抽象对象:拓扑组织,联想记忆和伽玛带同步之间的相互作用。

获取原文
获取原文并翻译 | 示例

摘要

Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson–Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.
机译:γ波段神经活动的同步不仅在感知过程中而且在更高的认知功能中都起着重要作用。在这里,我们提出了一个Wilson-Cowan振荡器的神经网络来模拟抽象对象的识别,每个抽象对象都表示为四个特征的集合。在通过兴奋性侧突触连接的振荡器的拓扑图中对特征进行排序,以实现相似性原理。先前对象的经验存储在连接不同拓扑图的远程突触中,并通过与时间相关的Hebbian学习(先前的知识原理)进行训练。最终,当所有功能同步振荡时,下游决策网络会检测到可靠的对象表示形式。进行的仿真将各种同时出现的对象分配给网络(从1到4),并且缺少一些属性和/或修改了属性,这表明网络可以重构对象,并从其他同时出现的对象中分割出对象,即使在信息,噪声变差的情况下,以及输入之间的适度相关性(一项共同功能)。敏感性和特异性之间的平衡取决于Hebbian学习的优势。然而,在所有情况下实现正确的重建都需要临时选择振荡频率。该模型表示尝试调查拓扑图,自动关联内存和gamma波段同步之间的相互作用以识别抽象对象的尝试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号