首页> 外文期刊>Neural Networks, IEEE Transactions on >Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation
【24h】

Two Conditions for Equivalence of 0-Norm Solution and 1-Norm Solution in Sparse Representation

机译:稀疏表示中0范数解和1范数解等价的两个条件

获取原文
获取原文并翻译 | 示例

摘要

In sparse representation, two important sparse solutions, the 0-norm and 1-norm solutions, have been receiving much of attention. The 0-norm solution is the sparsest, however it is not easy to obtain. Although the 1-norm solution may not be the sparsest, it can be easily obtained by the linear programming method. In many cases, the 0-norm solution can be obtained through finding the 1-norm solution. Many discussions exist on the equivalence of the two sparse solutions. This paper analyzes two conditions for the equivalence of the two sparse solutions. The first condition is necessary and sufficient, however, difficult to verify. Although the second is necessary but is not sufficient, it is easy to verify. In this paper, we analyze the second condition within the stochastic framework and propose a variant. We then prove that the equivalence of the two sparse solutions holds with high probability under the variant of the second condition. Furthermore, in the limit case where the 0-norm solution is extremely sparse, the second condition is also a sufficient condition with probability 1.
机译:在稀疏表示中,两个重要的稀疏解,0范数和1范数解受到了广泛的关注。 0-范数解是最稀疏的,但是并不容易获得。尽管1-范数解可能不是最稀疏的,但可以通过线性编程方法轻松获得。在许多情况下,可以通过找到1-范数解来获得0范数解。关于这两个稀疏解的等效性,存在许多讨论。本文分析了两个稀疏解的等价条件。第一个条件是必要和充分的,但是很难验证。尽管第二个是必需的,但还不够,但是很容易验证。在本文中,我们分析了随机框架内的第二个条件,并提出了一个变体。然后,我们证明在第二个条件的变体下,两个稀疏解的等价性具有很高的概率。另外,在0范数解非常稀疏的极限情况下,第二条件也是概率为1的充分条件。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号