首页> 外文期刊>Neural Networks, IEEE Transactions on >Textual and Visual Content-Based Anti-Phishing: A Bayesian Approach
【24h】

Textual and Visual Content-Based Anti-Phishing: A Bayesian Approach

机译:基于文本和视觉内容的反网络钓鱼:一种贝叶斯方法

获取原文
获取原文并翻译 | 示例

摘要

A novel framework using a Bayesian approach for content-based phishing web page detection is presented. Our model takes into account textual and visual contents to measure the similarity between the protected web page and suspicious web pages. A text classifier, an image classifier, and an algorithm fusing the results from classifiers are introduced. An outstanding feature of this paper is the exploration of a Bayesian model to estimate the matching threshold. This is required in the classifier for determining the class of the web page and identifying whether the web page is phishing or not. In the text classifier, the naive Bayes rule is used to calculate the probability that a web page is phishing. In the image classifier, the earth mover's distance is employed to measure the visual similarity, and our Bayesian model is designed to determine the threshold. In the data fusion algorithm, the Bayes theory is used to synthesize the classification results from textual and visual content. The effectiveness of our proposed approach was examined in a large-scale dataset collected from real phishing cases. Experimental results demonstrated that the text classifier and the image classifier we designed deliver promising results, the fusion algorithm outperforms either of the individual classifiers, and our model can be adapted to different phishing cases.
机译:提出了一种使用贝叶斯方法进行基于内容的网络钓鱼网页检测的新颖框架。我们的模型考虑了文本和视觉内容,以衡量受保护网页和可疑网页之间的相似性。介绍了文本分类器,图像分类器和融合分类器结果的算法。本文的一个突出特点是探索贝叶斯模型以估计匹配阈值。在分类器中,这是确定网页的类别并识别网页是否为网络钓鱼的必需条件。在文本分类器中,朴素的贝叶斯规则用于计算网页被仿冒的可能性。在图像分类器中,采用推土机的距离来衡量视觉相似度,而我们的贝叶斯模型则用于确定阈值。在数据融合算法中,使用贝叶斯理论从文本和视觉内容综合分类结果。我们的方法的有效性在从真实网络钓鱼案例中收集的大规模数据集中进行了检验。实验结果表明,我们设计的文本分类器和图像分类器可提供有希望的结果,融合算法的性能优于任何单个分类器,并且我们的模型可以适应不同的网络钓鱼情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号