首页> 外文期刊>Neural Networks, IEEE Transactions on >Efficient Revised Simplex Method for SVM Training
【24h】

Efficient Revised Simplex Method for SVM Training

机译:用于SVM培训的有效修订单纯形方法

获取原文
获取原文并翻译 | 示例

摘要

Existing active set methods reported in the literature for support vector machine (SVM) training must contend with singularities when solving for the search direction. When a singularity is encountered, an infinite descent direction can be carefully chosen that avoids cycling and allows the algorithm to converge. However, the algorithm implementation is likely to be more complex and less computationally efficient than would otherwise be required for an algorithm that does not have to contend with the singularities. We show that the revised simplex method introduced by Rusin provides a guarantee of nonsingularity when solving for the search direction. This method provides for a simpler and more computationally efficient implementation, as it avoids the need to test for rank degeneracies and also the need to modify factorizations or solution methods based upon those rank degeneracies. In our approach, we take advantage of the guarantee of nonsingularity by implementing an efficient method for solving the search direction and show that our algorithm is competitive with SVM-QP and also that it is a particularly effective when the fraction of nonbound support vectors is large. In addition, we show competitive performance of the proposed algorithm against two popular SVM training algorithms, SVMLight and LIBSVM.
机译:求解搜索方向时,文献中报道的用于支持向量机(SVM)训练的现有活动集方法必须与奇异性相抗衡。当遇到奇异点时,可以仔细选择一个无限下降的方向,这样可以避免循环并允许算法收敛。但是,与不必与奇异性进行竞争的算法相比,该算法的实现可能更复杂,计算效率更低。我们证明,由Rusin引入的修正单纯形法可以为求解搜索方向提供非奇异性的保证。该方法提供了一种更简单且计算效率更高的实现方式,因为它避免了测试秩退化的需要,并且避免了基于那些秩退化修改因式分解或求解方法的需求。在我们的方法中,我们通过实现一种有效的求解搜索方向的方法来利用非奇异性的保证,并表明我们的算法与SVM-QP具有竞争性,并且当非绑定支持向量的比例很大时,它特别有效。此外,我们展示了该算法相对于两种流行的SVM训练算法SVMLight和LIBSVM的竞争性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号