首页> 外文期刊>Neural Networks, IEEE Transactions on >Convergence Study in Extended Kalman Filter-Based Training of Recurrent Neural Networks
【24h】

Convergence Study in Extended Kalman Filter-Based Training of Recurrent Neural Networks

机译:基于扩展卡尔曼滤波的递归神经网络训练的收敛性研究

获取原文
获取原文并翻译 | 示例

摘要

Recurrent neural network (RNN) has emerged as a promising tool in modeling nonlinear dynamical systems, but the training convergence is still of concern. This paper aims to develop an effective extended Kalman filter-based RNN training approach with a controllable training convergence. The training convergence problem during extended Kalman filter-based RNN training has been proposed and studied by adapting two artificial training noise parameters: the covariance of measurement noise $(R)$ and the covariance of process noise $(Q)$ of Kalman filter. The $R$ and $Q$ adaption laws have been developed using the Lyapunov method and the maximum likelihood method, respectively. The effectiveness of the proposed adaption laws has been tested using a nonlinear dynamical benchmark system and further applied in cutting tool wear modeling. The results show that the $R$ adaption law can effectively avoid the divergence problem and ensure the training convergence, whereas the $Q$ adaption law helps improve the training convergence speed.
机译:递归神经网络(RNN)已经成为建模非线性动力学系统的有前途的工具,但训练收敛性仍然值得关注。本文旨在开发一种具有可控训练收敛性的有效的基于扩展卡尔曼滤波器的RNN训练方法。通过调整两个人工训练噪声参数,提出了基于扩展卡尔曼滤波器的RNN训练中的训练收敛问题:测量噪声的协方差和卡尔曼滤波器的过程噪声的协方差。 $ R $和$ Q $适应定律分别使用Lyapunov方法和最大似然方法开发。所提出的适应定律的有效性已使用非线性动力学基准系统进行了测试,并进一步应用于切削刀具磨损建模。结果表明,$ R $自适应律可以有效地避免发散问题并确保训练收敛,而$ Q $自适应律有助于提高训练收敛速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号