首页> 外文期刊>Neural Networks, IEEE Transactions on >Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals
【24h】

Lower Upper Bound Estimation Method for Construction of Neural Network-Based Prediction Intervals

机译:基于神经网络的预测区间构造的下界估计方法

获取原文
获取原文并翻译 | 示例

摘要

Prediction intervals (PIs) have been proposed in the literature to provide more information by quantifying the level of uncertainty associated to the point forecasts. Traditional methods for construction of neural network (NN) based PIs suffer from restrictive assumptions about data distribution and massive computational loads. In this paper, we propose a new, fast, yet reliable method for the construction of PIs for NN predictions. The proposed lower upper bound estimation (LUBE) method constructs an NN with two outputs for estimating the prediction interval bounds. NN training is achieved through the minimization of a proposed PI-based objective function, which covers both interval width and coverage probability. The method does not require any information about the upper and lower bounds of PIs for training the NN. The simulated annealing method is applied for minimization of the cost function and adjustment of NN parameters. The demonstrated results for 10 benchmark regression case studies clearly show the LUBE method to be capable of generating high-quality PIs in a short time. Also, the quantitative comparison with three traditional techniques for prediction interval construction reveals that the LUBE method is simpler, faster, and more reliable.
机译:文献中提出了预测间隔(PI),以通过量化与点预测相关的不确定性级别来提供更多信息。基于神经网络(PI)的PI的传统构建方法受到有关数据分布和大量计算负荷的限制性假设的困扰。在本文中,我们提出了一种新的,快速而可靠的方法来构建用于NN预测的PI。拟议的下限上限估计(LUBE)方法构造了一个带有两个输出的NN,用于估计预测间隔范围。通过最小化提议的基于PI的目标函数来实现NN训练,该目标函数既包括区间宽度又包括覆盖概率。该方法不需要任何关于PI的上限和下限的信息来训练NN。模拟退火方法被应用于最小化成本函数和神经网络参数的调整。 10个基准回归案例研究的结果表明,LUBE方法能够在短时间内生成高质量的PI。而且,与三种传统的预测区间构建技术进行定量比较表明,LUBE方法更简单,更快,更可靠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号