首页> 外文期刊>Neural Networks, IEEE Transactions on >Super-Resolution Method for Face Recognition Using Nonlinear Mappings on Coherent Features
【24h】

Super-Resolution Method for Face Recognition Using Nonlinear Mappings on Coherent Features

机译:基于相干特征的非线性映射的人脸识别超分辨率方法

获取原文
获取原文并翻译 | 示例

摘要

Low-resolution (LR) of face images significantly decreases the performance of face recognition. To address this problem, we present a super-resolution method that uses nonlinear mappings to infer coherent features that favor higher recognition of the nearest neighbor (NN) classifiers for recognition of single LR face image. Canonical correlation analysis is applied to establish the coherent subspaces between the principal component analysis (PCA) based features of high-resolution (HR) and LR face images. Then, a nonlinear mapping between HR/LR features can be built by radial basis functions (RBFs) with lower regression errors in the coherent feature space than in the PCA feature space. Thus, we can compute super-resolved coherent features corresponding to an input LR image according to the trained RBF model efficiently and accurately. And, face identity can be obtained by feeding these super-resolved features to a simple NN classifier. Extensive experiments on the Facial Recognition Technology, University of Manchester Institute of Science and Technology, and Olivetti Research Laboratory databases show that the proposed method outperforms the state-of-the-art face recognition algorithms for single LR image in terms of both recognition rate and robustness to facial variations of pose and expression.
机译:人脸图像的低分辨率(LR)会大大降低人脸识别的性能。为了解决这个问题,我们提出了一种超分辨率方法,该方法使用非线性映射来推断相干特征,这些特征有助于对最近邻居(NN)分类器进行更高的识别,以识别单个LR面部图像。应用规范相关分析来建立基于主成分分析(PCA)的高分辨率(HR)和LR面部图像特征之间的相干子空间。然后,可以通过径向基函数(RBF)建立HR / LR特征之间的非线性映射,并且相干特征空间中的回归误差比PCA特征空间中的回归误差小。因此,我们可以根据训练后的RBF模型来计算与输入LR图像相对应的超分辨相干特征。并且,可以通过将这些超分辨特征提供给简单的NN分类器来获得人脸身份。在人脸识别技术,曼彻斯特科技大学和Olivetti研究实验室的数据库上进行的大量实验表明,无论是在识别率还是在识别率上,该方法都优于单张LR图像的最新人脸识别算法。对面部姿势和表情变化的鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号