首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks
【24h】

Neural-Fitted TD-Leaf Learning for Playing Othello With Structured Neural Networks

机译:用结构化神经网络玩奥赛罗的神经拟合TD叶学习

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a methodology for quickly learning to play games at a strong level. The methodology consists of a novel combination of three techniques, and a variety of experiments on the game of Othello demonstrates their usefulness. First, structures or topologies in neural network connectivity patterns are used to decrease the number of learning parameters and to deal more effectively with the structural credit assignment problem, which is to change individual network weights based on the obtained feedback. Furthermore, the structured neural networks are trained with the novel neural-fitted temporal difference (TD) learning algorithm to create a system that can exploit most of the training experiences and enhance learning speed and performance. Finally, we use the neural-fitted TD-leaf algorithm to learn more effectively when look-ahead search is performed by the game-playing program. Our extensive experimental study clearly indicates that the proposed method outperforms linear networks and fully connected neural networks or evaluation functions evolved with evolutionary algorithms.
机译:本文介绍了一种快速学习高水平游戏的方法。该方法包括三种技术的新颖组合,并且在《奥赛罗》游戏中的各种实验证明了它们的有用性。首先,使用神经网络连通性模式中的结构或拓扑来减少学习参数的数量,并更有效地处理结构化的信用分配问题,即基于获得的反馈来更改单个网络的权重。此外,使用新颖的神经拟合时差(TD)学习算法对结构化神经网络进行训练,以创建可利用大多数训练经验并提高学习速度和性能的系统。最后,当游戏程序执行预搜索时,我们使用神经拟合TD叶算法来更有效地学习。我们广泛的实验研究清楚地表明,所提出的方法优于线性网络和完全连接的神经网络或通过进化算法演化的评估函数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号