首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Asynchronous Cellular Automaton-Based Neuron: Theoretical Analysis and On-FPGA Learning
【24h】

Asynchronous Cellular Automaton-Based Neuron: Theoretical Analysis and On-FPGA Learning

机译:基于异步细胞自动机的神经元:理论分析和FPGA上学习

获取原文
获取原文并翻译 | 示例

摘要

A generalized asynchronous cellular automaton-based neuron model is a special kind of cellular automaton that is designed to mimic the nonlinear dynamics of neurons. The model can be implemented as an asynchronous sequential logic circuit and its control parameter is the pattern of wires among the circuit elements that is adjustable after implementation in a field-programmable gate array (FPGA) device. In this paper, a novel theoretical analysis method for the model is presented. Using this method, stabilities of neuron-like orbits and occurrence mechanisms of neuron-like bifurcations of the model are clarified theoretically. Also, a novel learning algorithm for the model is presented. An equivalent experiment shows that an FPGA-implemented learning algorithm enables an FPGA-implemented model to automatically reproduce typical nonlinear responses and occurrence mechanisms observed in biological and model neurons.
机译:基于广义异步细胞自动机的神经元模型是一种特殊的细胞自动机,旨在模拟神经元的非线性动力学。该模型可以实现为异步顺序逻辑电路,其控制参数是电路元件之间的布线模式,在现场可编程门阵列(FPGA)器件中实现后即可调整。本文提出了一种新的模型理论分析方法。使用该方法,从理论上阐明了模型的神经元样轨道的稳定性和神经元样分叉的发生机理。此外,提出了一种新颖的模型学习算法。等效的实验表明,由FPGA实现的学习算法使FPGA实现的模型能够自动重现在生物学和模型神经元中观察到的典型非线性响应和发生机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号