首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >A Robust Subspace Projection Autoassociative Memory Based on the M-Estimation Method
【24h】

A Robust Subspace Projection Autoassociative Memory Based on the M-Estimation Method

机译:基于M估计的鲁棒子空间投影自联想记忆

获取原文
获取原文并翻译 | 示例

摘要

An autoassociative memory (AM) that projects an input pattern onto a linear subspace is referred to as a subspace projection AM (SPAM). The optimal linear AM (OLAM), which can be used for the storage and recall of real-valued patterns, is an example of SPAM. In this brief we introduce a novel SPAM model based on the robust M-estimation method. In contrast to the OLAM and many other associative memory models, the robust SPAM represents a neural network in which the synaptic weights are iteratively adjusted during the retrieval phase. Computational experiments concerning the reconstruction of corrupted gray-scale images reveal that the novel memories exhibit an excellent tolerance with respect to salt and pepper noise as well as some tolerance with respect to Gaussian noise and blurred input images.
机译:将输入模式投影到线性子空间上的自缔合存储器(AM)称为子空间投影AM(SPAM)。可以用于存储和调用实数值模式的最佳线性AM(OLAM)是SPAM的一个示例。在本文中,我们介绍了一种基于鲁棒M估计方法的新型SPAM模型。与OLAM和许多其他关联记忆模型相反,健壮的SPAM表示一个神经网络,其中在检索阶段迭代调整突触权重。有关重建损坏的灰度图像的计算实验表明,这种新颖的存储器对盐和胡椒噪声表现出极好的耐受性,对高斯噪声和模糊的输入图像表现出一定的耐受性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号