首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Efficient Algorithms for Exact Inference in Sequence Labeling SVMs
【24h】

Efficient Algorithms for Exact Inference in Sequence Labeling SVMs

机译:用于序列标记SVM的精确推理的高效算法

获取原文
获取原文并翻译 | 示例

摘要

The task of structured output prediction deals with learning general functional dependencies between arbitrary input and output spaces. In this context, two loss-sensitive formulations for maximum-margin training have been proposed in the literature, which are referred to as margin and slack rescaling, respectively. The latter is believed to be more accurate and easier to handle. Nevertheless, it is not popular due to the lack of known efficient inference algorithms; therefore, margin rescaling—which requires a similar type of inference as normal structured prediction—is the most often used approach. Focusing on the task of label sequence learning, we here define a general framework that can handle a large class of inference problems based on Hamming-like loss functions and the concept of decomposability for the underlying joint feature map. In particular, we present an efficient generic algorithm that can handle both rescaling approaches and is guaranteed to find an optimal solution in polynomial time.
机译:结构化输出预测的任务涉及学习任意输入和输出空间之间的一般功能依赖性。在这种情况下,文献中提出了两种用于最大保证金训练的对损失敏感的公式,分别称为保证金和松弛重新定标。后者被认为更准确并且更容易处理。然而,由于缺乏已知的有效推理算法,它并不受欢迎。因此,余量重缩放是最常用的方法,它需要与正常结构化预测类似的推理类型。重点关注标签序列学习的任务,我们在此定义一个通用框架,该框架可基于类似汉明的损失函数和底层联合特征图的可分解性概念来处理一大类推理问题。特别是,我们提出了一种有效的通用算法,该算法可以处理两种缩放方法,并且可以保证在多项式时间内找到最优解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号