首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Sliding-Mode Control Design for Nonlinear Systems Using Probability Density Function Shaping
【24h】

Sliding-Mode Control Design for Nonlinear Systems Using Probability Density Function Shaping

机译:基于概率密度函数整形的非线性系统滑模控制设计

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we propose a sliding-mode-based stochastic distribution control algorithm for nonlinear systems, where the sliding-mode controller is designed to stabilize the stochastic system and stochastic distribution control tries to shape the sliding surface as close as possible to the desired probability density function. Kullback–Leibler divergence is introduced to the stochastic distribution control, and the parameter of the stochastic distribution controller is updated at each sample interval rather than using a batch mode. It is shown that the estimated weight vector will converge to its ideal value and the system will be asymptotically stable under the rank-condition, which is much weaker than the persistent excitation condition. The effectiveness of the proposed algorithm is illustrated by simulation.
机译:在本文中,我们提出了一种基于滑模的非线性系统随机分布控制算法,该算法设计了滑模控制器来稳定随机系统,而随机分布控制则试图使滑动表面尽可能接近所需的形状。概率密度函数。 Kullback-Leibler散度被引入到随机分布控制中,并且随机分布控制器的参数在每个采样间隔更新,而不是使用批处理模式。结果表明,估计的权重向量将收敛到其理想值,并且该系统在秩条件下将是渐近稳定的,该秩条件比持续激励条件弱得多。仿真结果表明了所提算法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号