首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Neural Network Dynamic Surface Control for a Class of Time-Delay Nonlinear Systems With Hysteresis Inputs and Dynamic Uncertainties
【24h】

Adaptive Neural Network Dynamic Surface Control for a Class of Time-Delay Nonlinear Systems With Hysteresis Inputs and Dynamic Uncertainties

机译:一类具有滞后输入和动态不确定性的非线性系统的自适应神经网络动态表面控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, an adaptive neural network (NN) dynamic surface control is proposed for a class of time-delay nonlinear systems with dynamic uncertainties and unknown hysteresis. The main advantages of the developed scheme are: 1) NNs are utilized to approximately describe nonlinearities and unknown dynamics of the nonlinear time-delay systems, making it possible to deal with unknown nonlinear uncertain systems and pursue the performance of the tracking error; 2) using the finite covering lemma together with the NNs approximators, the Krasovskii function is abandoned, which paves the way for obtaining the performance of the tracking error; 3) by introducing an initializing technique, the performance of the tracking error can be achieved; 4) using a generalized Prandtl–Ishlinskii (PI) model, the limitation of the traditional PI hysteresis model is overcome; and 5) by applying the Young’s inequalities to deal with the weight vector of the NNs, the updated laws are needed only at the last controller design step with only two parameters being estimated, which reduces the computational burden. It is proved that the proposed scheme can guarantee semiglobal stability of the closed-loop system and achieves the performance of the tracking error. Simulation results for general second-order time-delay nonlinear systems and the tuning metal cutting system are presented to demonstrate the efficiency of the proposed method.
机译:针对一类具有动态不确定性和未知滞后作用的时滞非线性系统,提出了一种自适应神经网络动态表面控制方法。该方案的主要优点是:1)利用神经网络近似地描述了非线性时滞系统的非线性和未知动力学,从而有可能处理未知的非线性不确定系统并追求跟踪误差的性能。 2)使用有限覆盖引理和NNs逼近器,放弃了Krasovskii函数,这为获得跟踪误差的性能铺平了道路; 3)通过引入初始化技术,可以实现跟踪误差的性能; 4)使用广义Prandtl–Ishlinskii(PI)模型,克服了传统PI磁滞模型的局限性; 5)通过应用杨氏不等式处理神经网络的权向量,仅在最后一个控制器设计步骤中仅需估计两个参数就需要更新的定律,从而减少了计算负担。实践证明,该方案可以保证闭环系统的半全局稳定性,并能达到跟踪误差的性能。给出了一般的二阶时滞非线性系统和金属调谐切割系统的仿真结果,以证明该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号