首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems With Lévy Noise on Networks
【24h】

Graph Theory-Based Approach for Stability Analysis of Stochastic Coupled Systems With Lévy Noise on Networks

机译:网络上带有Lévy噪声的随机耦合系统稳定性的基于图论的方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper, a novel class of stochastic coupled systems with Lévy noise on networks (SCSLNNs) is presented. Both white noise and Lévy noise are considered in the networks. By exploiting graph theory and Lyapunov stability theory, criteria ensuring th moment exponential stability and stability in probability of these SCSLNNs are established, respectively. These principles are closely related to the topology of the network and the perturbation intensity of white noise and Lévy noise. Moreover, to verify the theoretical results, stochastic coupled oscillators with Lévy noise on a network and stochastic Volterra predator–prey system with Lévy noise are performed. Finally, a numerical example about oscillators’ network is provided to illustrate the feasibility of our analytical results.
机译:在本文中,提出了一类新的具有Lévy噪声网络的随机耦合系统(SCSLNN)。网络中同时考虑了白噪声和Lévy噪声。通过利用图论和Lyapunov稳定性理论,分别建立了确保这些SCSLNN的矩指数稳定性和概率稳定性的判据。这些原理与网络的拓扑以及白噪声和Lévy噪声的扰动强度密切相关。此外,为了验证理论结果,我们执行了网络上具有Lévy噪声的随机耦合振荡器和具有Lévy噪声的随机Volterra捕食者-食饵系统。最后,提供了一个有关振荡器网络的数值示例,以说明我们分析结果的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号