首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Evolutionary Fuzzy ARTMAP Neural Networks for Classification of Semiconductor Defects
【24h】

Evolutionary Fuzzy ARTMAP Neural Networks for Classification of Semiconductor Defects

机译:用于半导体缺陷分类的进化模糊ARTMAP神经网络

获取原文
获取原文并翻译 | 示例

摘要

Wafer defect detection using an intelligent system is an approach of quality improvement in semiconductor manufacturing that aims to enhance its process stability, increase production capacity, and improve yields. Occasionally, only few records that indicate defective units are available and they are classified as a minority group in a large database. Such a situation leads to an imbalanced data set problem, wherein it engenders a great challenge to deal with by applying machine-learning techniques for obtaining effective solution. In addition, the database may comprise overlapping samples of different classes. This paper introduces two models of evolutionary fuzzy ARTMAP (FAM) neural networks to deal with the imbalanced data set problems in a semiconductor manufacturing operations. In particular, both the FAM models and hybrid genetic algorithms are integrated in the proposed evolutionary artificial neural networks (EANNs) to classify an imbalanced data set. In addition, one of the proposed EANNs incorporates a facility to learn overlapping samples of different classes from the imbalanced data environment. The classification results of the proposed evolutionary FAM neural networks are presented, compared, and analyzed using several classification metrics. The outcomes positively indicate the effectiveness of the proposed networks in handling classification problems with imbalanced data sets.
机译:使用智能系统进行晶圆缺陷检测是半导体制造中质量改进的一种方法,旨在提高其工艺稳定性,提高生产能力并提高产量。有时,只有很少的指示缺陷单元的记录可用,并且在大型数据库中将它们分类为少数群体。这种情况导致了数据集不平衡的问题,其中通过应用机器学习技术来获得有效的解决方案带来了巨大的挑战。另外,数据库可以包括不同类别的重叠样本。本文介绍了两种进化模糊ARTMAP(FAM)神经网络模型,以解决半导体制造过程中数据集不平衡的问题。特别是,FAM模型和混合遗传算法都集成在拟议的进化人工神经网络(EANN)中,以对不平衡数据集进行分类。另外,其中一种提议的EANN包含了一种从不平衡数据环境中学习不同类别的重叠样本的功能。提出,比较和分析了所提出的进化FAM神经网络的分类结果。结果积极地表明了拟议网络在处理数据集不平衡的分类问题方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号