首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming
【24h】

Adaptive Optimal Control of Highly Dissipative Nonlinear Spatially Distributed Processes With Neuro-Dynamic Programming

机译:神经网络动态规划的高耗散非线性空间分布过程的自适应最优控制

获取原文
获取原文并翻译 | 示例
           

摘要

Highly dissipative nonlinear partial differential equations (PDEs) are widely employed to describe the system dynamics of industrial spatially distributed processes (SDPs). In this paper, we consider the optimal control problem of the general highly dissipative SDPs, and propose an adaptive optimal control approach based on neuro-dynamic programming (NDP). Initially, Karhunen-Loève decomposition is employed to compute empirical eigenfunctions (EEFs) of the SDP based on the method of snapshots. These EEFs together with singular perturbation technique are then used to obtain a finite-dimensional slow subsystem of ordinary differential equations that accurately describes the dominant dynamics of the PDE system. Subsequently, the optimal control problem is reformulated on the basis of the slow subsystem, which is further converted to solve a Hamilton-Jacobi–Bellman (HJB) equation. HJB equation is a nonlinear PDE that has proven to be impossible to solve analytically. Thus, an adaptive optimal control method is developed via NDP that solves the HJB equation online using neural network (NN) for approximating the value function; and an online NN weight tuning law is proposed without requiring an initial stabilizing control policy. Moreover, by involving the NN estimation error, we prove that the original closed-loop PDE system with the adaptive optimal control policy is semiglobally uniformly ultimately bounded. Finally, the developed method is tested on a nonlinear diffusion-convection-reaction process and applied to a temperature cooling fin of high-speed aerospace vehicle, and the achieved results show its effectiveness.
机译:高度耗散的非线性偏微分方程(PDE)被广泛用于描述工业空间分布过程(SDP)的系统动力学。在本文中,我们考虑了一般的高耗散SDP的最优控制问题,并提出了一种基于神经动态规划(NDP)的自适应最优控制方法。最初,基于快照方法,采用Karhunen-Loève分解来计算SDP的经验本征函数(EEF)。然后,这些EEF与奇异摄动技术一起用于获得常微分方程的有限维慢子系统,该子系统可以精确地描述PDE系统的主导动力学。随后,在慢子系统的基础上重新构造了最优控制问题,并将其进一步转换为求解Hamilton-Jacobi-Bellman(HJB)方程。 HJB方程是一种非线性PDE,已证明不可能通过解析求解。因此,通过NDP提出了一种自适应最优控制方法,该方法使用神经网络(NN)近似值函数在线求解HJB方程。提出了一种在线NN权重调整法则,无需初始稳定控制策略。此外,通过涉及NN估计误差,我们证明了具有自适应最优控制策略的原始闭环PDE系统是半全局一致的最终有界的。最后,在非线性扩散-对流-反应过程中对所开发的方法进行了测试,并将其应用于高速航空航天飞机的温度冷却翅片,其结果表明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号