首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines
【24h】

Scaling Up Graph-Based Semisupervised Learning via Prototype Vector Machines

机译:通过原型向量机扩大基于图的半监督学习

获取原文
获取原文并翻译 | 示例

摘要

When the amount of labeled data are limited, semisupervised learning can improve the learner's performance by also using the often easily available unlabeled data. In particular, a popular approach requires the learned function to be smooth on the underlying data manifold. By approximating this manifold as a weighted graph, such graph-based techniques can often achieve state-of-the-art performance. However, their high time and space complexities make them less attractive on large data sets. In this paper, we propose to scale up graph-based semisupervised learning using a set of sparse prototypes derived from the data. These prototypes serve as a small set of data representatives, which can be used to approximate the graph-based regularizer and to control model complexity. Consequently, both training and testing become much more efficient. Moreover, when the Gaussian kernel is used to define the graph affinity, a simple and principled method to select the prototypes can be obtained. Experiments on a number of real-world data sets demonstrate encouraging performance and scaling properties of the proposed approach. It also compares favorably with models learned via -regularization at the same level of model sparsity. These results demonstrate the efficacy of the proposed approach in producing highly parsimonious and accurate models for semisupervised learning.
机译:当标记数据的数量有限时,半监督学习还可以通过使用通常容易获得的未标记数据来提高学习者的表现。特别地,一种流行的方法要求学习的功能在基础数据流形上是平滑的。通过将此流形近似为加权图,此类基于图的技术通常可以实现最新的性能。但是,它们的时间和空间复杂性很高,因此在大型数据集上的吸引力降低了。在本文中,我们建议使用从数据派生的一组稀疏原型来扩展基于图的半监督学习。这些原型充当一小组数据代表,可用于近似基于图的正则化器并控制模型的复杂性。因此,培训和测试都变得更加有效。此外,当使用高斯核定义图亲和度时,可以获得一种简单且原则上的选择原型的方法。在许多实际数据集上进行的实验表明,该方法具有令人鼓舞的性能和可伸缩性。在与模型稀疏性相同的水平上,它也与通过-regularization学习的模型相比具有优势。这些结果证明了所提出的方法在为半监督学习产生高度简约和准确的模型中的功效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号