首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Adaptive Hidden Markov Model With Anomaly States for Price Manipulation Detection
【24h】

Adaptive Hidden Markov Model With Anomaly States for Price Manipulation Detection

机译:具有异常状态的自适应隐马尔可夫模型的价格操纵检测

获取原文
获取原文并翻译 | 示例

摘要

Price manipulation refers to the activities of those traders who use carefully designed trading behaviors to manually push up or down the underlying equity prices for making profits. With increasing volumes and frequency of trading, price manipulation can be extremely damaging to the proper functioning and integrity of capital markets. The existing literature focuses on either empirical studies of market abuse cases or analysis of particular manipulation types based on certain assumptions. Effective approaches for analyzing and detecting price manipulation in real time are yet to be developed. This paper proposes a novel approach, called adaptive hidden Markov model with anomaly states (AHMMAS) for modeling and detecting price manipulation activities. Together with wavelet transformations and gradients as the feature extraction methods, the AHMMAS model caters to price manipulation detection and basic manipulation type recognition. The evaluation experiments conducted on seven stock tick data from NASDAQ and the London Stock Exchange and 10 simulated stock prices by stochastic differential equation show that the proposed AHMMAS model can effectively detect price manipulation patterns and outperforms the selected benchmark models.
机译:价格操纵是指那些使用精心设计的交易行为来手动上调或下调潜在股票价格以获取利润的交易者的活动。随着交易量和交易频率的增加,价格操纵会严重损害资本市场的正常运作和完整性。现有文献集中于对市场滥用案件的实证研究或基于某些假设的特定操纵类型的分析。实时分析和检测价格操纵的有效方法尚待开发。本文提出了一种新的方法,称为具有异常状态的自适应隐马尔可夫模型(AHMMAS),用于建模和检测价格操纵活动。结合小波变换和梯度作为特征提取方法,AHMMAS模型可满足价格操纵检测和基本操纵类型识别的需求。对来自纳斯达克和伦敦证券交易所的七个股票报价数据和通过随机微分方程式模拟的十个股票价格进行的评估实验表明,所提出的AHMMAS模型可以有效地检测价格操纵模式,并且优于所选的基准模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号