首页> 外文期刊>Computers & Security >Efficient anomaly detection by modeling privilege flows using hidden Markov model
【24h】

Efficient anomaly detection by modeling privilege flows using hidden Markov model

机译:通过使用隐马尔可夫模型对特权流建模来进行有效的异常检测

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection techniques have been devised to address the limitations of misuse detection approaches for intrusion detection with the model of normal behaviors. A hidden Markov model (HMM) is a useful tool to model sequence information, an optimal modeling technique to minimize false-positive error while maximizing detection rate. In spite of high performance, however, it requires large amounts of time to model normal behaviors and determine intrusions, making it difficult to detect intrusions in real-time. This paper proposes an effective HMM based intrusion detection system that improves the modeling time and performance by only considering the privilege transition flows based on the domain knowledge of attacks. Experimental results show that training with the proposed method is significantly faster than the conventional method trained with all data, without loss of detection performance.
机译:已经设计出异常检测技术以利用正常行为模型来解决用于入侵检测的滥用检测方法的局限性。隐马尔可夫模型(HMM)是一种有用的工具,可以对序列信息进行建模,这是一种最佳的建模技术,可在最大程度提高检测率的同时将假阳性误差降至最低。但是,尽管具有高性能,但仍需要大量时间来对正常行为进行建模并确定入侵,从而难以实时检测入侵。本文提出了一种有效的基于HMM的入侵检测系统,该系统仅考虑基于攻击领域的知识的特权转换流,从而改善了建模时间和性能。实验结果表明,使用该方法进行训练比使用所有数据进行训练的常规方法要快得多,并且不会损失检测性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号