首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Similarity Constraints-Based Structured Output Regression Machine: An Approach to Image Super-Resolution
【24h】

Similarity Constraints-Based Structured Output Regression Machine: An Approach to Image Super-Resolution

机译:基于相似约束的结构化输出回归机:图像超分辨率的一种方法

获取原文
获取原文并翻译 | 示例

摘要

For regression-based single-image super-resolution (SR) problem, the key is to establish a mapping relation between high-resolution (HR) and low-resolution (LR) image patches for obtaining a visually pleasing quality image. Most existing approaches typically solve it by dividing the model into several single-output regression problems, which obviously ignores the circumstance that a pixel within an HR patch affects other spatially adjacent pixels during the training process, and thus tends to generate serious ringing artifacts in resultant HR image as well as increase computational burden. To alleviate these problems, we propose to use structured output regression machine (SORM) to simultaneously model the inherent spatial relations between the HR and LR patches, which is propitious to preserve sharp edges. In addition, to further improve the quality of reconstructed HR images, a nonlocal (NL) self-similarity prior in natural images is introduced to formulate as a regularization term to further enhance the SORM-based SR results. To offer a computation-effective SORM method, we use a relative small nonsupport vector samples to establish the accurate regression model and an accelerating algorithm for NL self-similarity calculation. Extensive SR experiments on various images indicate that the proposed method can achieve more promising performance than the other state-of-the-art SR methods in terms of both visual quality and computational cost.
机译:对于基于回归的单图像超分辨率(SR)问题,关键是要在高分辨率(HR)和低分辨率(LR)图像块之间建立映射关系,以获得视觉上令人满意的质量图像。大多数现有方法通常通过将模型划分为几个单输出回归问题来解决该问题,这显然忽略了HR补丁内的像素在训练过程中影响其他空间相邻像素的情况,因此往往会在结果中产生严重的振铃伪像HR图像以及增加的计算负担。为了缓解这些问题,我们建议使用结构化输出回归机(SORM)同时对HR和LR补丁之间的固有空间关系进行建模,这有利于保留锐利的边缘。另外,为了进一步提高重建的HR图像的质量,引入了自然图像中的非局部(NL)自相似性,以公式化为正规化项,以进一步增强基于SORM的SR结果。为了提供一种计算有效的SORM方法,我们使用相对较小的非支持向量样本来建立精确的回归模型和用于NL自相似性计算的加速算法。在各种图像上的大量SR实验表明,从视觉质量和计算成本两方面来看,与其他最新的SR方法相比,该方法可以实现更有希望的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号