首页> 外文期刊>Neural Networks and Learning Systems, IEEE Transactions on >Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing
【24h】

Hierarchical Temporal Memory Based on Spin-Neurons and Resistive Memory for Energy-Efficient Brain-Inspired Computing

机译:基于自旋神经元和电阻记忆的分层时间记忆,用于高效节能的脑启发计算

获取原文
获取原文并翻译 | 示例

摘要

Hierarchical temporal memory (HTM) tries to mimic the computing in cerebral neocortex. It identifies spatial and temporal patterns in the input for making inferences. This may require a large number of computationally expensive tasks, such as dot product evaluations. Nanodevices that can provide direct mapping for such primitives are of great interest. In this paper, we propose that the computing blocks for HTM can be mapped using low-voltage, magnetometallic spin-neurons combined with an emerging resistive crossbar network, which involves a comprehensive design at algorithm, architecture, circuit, and device levels. Simulation results show the possibility of more than 200× lower energy as compared with a 45-nm CMOS ASIC design.
机译:分层时间记忆(HTM)试图模仿大脑新皮层中的计算。它识别输入中的空间和时间模式以进行推断。这可能需要大量计算量大的任务,例如点积评估。可以为此类图元提供直接映射的纳米设备引起了极大的兴趣。在本文中,我们建议可以使用低压,磁性金属自旋神经元与新兴的电阻性纵横制网络相结合来映射HTM的计算模块,该网络涉及在算法,体系结构,电路和器件级别的全面设计。仿真结果表明,与45nm CMOS ASIC设计相比,能耗降低了200倍以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号